Table of Contents
Raudenbush & Bryk (1985)
The Methods and Data
Raudenbush and Bryk (1985) describe the meta-analytic random- and mixed-effects models and describe restricted maximum likelihood estimation for the amount of (residual) heterogeneity (p. 80-82).1) The models and methods are illustrated with a meta-analytic dataset of studies examining how teachers' expectations about their pupils can influence actual IQ levels (Raudenbush, 1984). The data are provided in Table 1 of the article and can be loaded with:
library(metafor) dat <- dat.raudenbush1985 dat
(I copy the dataset into dat
, which is a bit shorter and therefore easier to type further below). The contents of the dataset are:
study author year weeks setting tester n1i n2i yi vi 1 1 Rosenthal et al. 1974 2 group aware 77 339 0.0300 0.0156 2 2 Conn et al. 1968 21 group aware 60 198 0.1200 0.0216 3 3 Jose & Cody 1971 19 group aware 72 72 -0.1400 0.0279 4 4 Pellegrini & Hicks 1972 0 group aware 11 22 1.1800 0.1391 5 5 Pellegrini & Hicks 1972 0 group blind 11 22 0.2600 0.1362 6 6 Evans & Rosenthal 1969 3 group aware 129 348 -0.0600 0.0106 7 7 Fielder et al. 1971 17 group blind 110 636 -0.0200 0.0106 8 8 Claiborn 1969 24 group aware 26 99 -0.3200 0.0484 9 9 Kester 1969 0 group aware 75 74 0.2700 0.0269 10 10 Maxwell 1970 1 indiv blind 32 32 0.8000 0.0630 11 11 Carter 1970 0 group blind 22 22 0.5400 0.0912 12 12 Flowers 1966 0 group blind 43 38 0.1800 0.0497 13 13 Keshock 1970 1 indiv blind 24 24 -0.0200 0.0835 14 14 Henrikson 1970 2 indiv blind 19 32 0.2300 0.0841 15 15 Fine 1972 17 group aware 80 79 -0.1800 0.0253 16 16 Grieger 1970 5 group blind 72 72 -0.0600 0.0279 17 17 Rosenthal & Jacobson 1968 1 group aware 65 255 0.3000 0.0193 18 18 Fleming & Anttonen 1971 2 group blind 233 224 0.0700 0.0088 19 19 Ginsburg 1970 7 group aware 65 67 -0.0700 0.0303
Note that the dataset includes the sampling variances (these are just the square of the standard errors reported by Raudenbush & Bryk, 1985).
Random-Effects Model
The results from the random-effects model can now be obtained with:
res <- rma(yi, vi, data=dat, digits=3) res
Random-Effects Model (k = 19; tau^2 estimator: REML) tau^2 (estimated amount of total heterogeneity): 0.019 (SE = 0.016) tau (square root of estimated tau^2 value): 0.137 I^2 (total heterogeneity / total variability): 41.86% H^2 (total variability / sampling variability): 1.72 Test for Heterogeneity: Q(df = 18) = 35.830, p-val = 0.007 Model Results: estimate se zval pval ci.lb ci.ub 0.084 0.052 1.621 0.105 -0.018 0.185 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
REML estimation is the default for the rma()
function, so these results reproduce what is reported in the article. In particular, $\hat{\tau}^2 = .019$ (p. 83), $Q(df=18) = 35.83$ (p. 85), $\hat{\mu} = .084$ (p. 85), and $z = 1.62$ (p. 86) for the test $\mbox{H}_0{:}\; \mu = 0$.
Empirical Bayes Estimates
The empirical Bayes estimates can be obtained with:
blup(res)
pred se pi.lb pi.ub 1 0.054 0.095 -0.132 0.241 2 0.101 0.104 -0.103 0.304 3 -0.006 0.110 -0.223 0.210 4 0.214 0.137 -0.053 0.482 5 0.105 0.136 -0.162 0.372 6 -0.008 0.084 -0.174 0.157 7 0.017 0.084 -0.148 0.183 8 -0.029 0.122 -0.269 0.210 9 0.160 0.110 -0.054 0.375 10 0.249 0.127 0.000 0.497 11 0.162 0.132 -0.097 0.421 12 0.110 0.123 -0.130 0.351 13 0.065 0.131 -0.192 0.321 14 0.110 0.131 -0.146 0.367 15 -0.029 0.108 -0.241 0.183 16 0.026 0.110 -0.191 0.242 17 0.191 0.101 -0.008 0.389 18 0.074 0.079 -0.081 0.230 19 0.025 0.112 -0.195 0.245
These values are shown in the article in Figure 2.
Mixed-Effects Model
Next, Raudenbush and Bryk (1985) use a mixed-effects model with the number of prior contact weeks as predictor/moderator. For this analysis, they recode all week values greater than 3 to 3:
dat$weeks.c <- ifelse(dat$weeks > 3, 3, dat$weeks)
Then, the mixed-effects model can be fitted with:
res <- rma(yi, vi, mods = ~ weeks.c, data=dat, digits=3) res
Mixed-Effects Model (k = 19; tau^2 estimator: REML) tau^2 (estimated amount of residual heterogeneity): 0.000 (SE = 0.007) tau (square root of estimated tau^2 value): 0.001 I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00 R^2 (amount of heterogeneity accounted for): 100.00% Test for Residual Heterogeneity: QE(df = 17) = 16.571, p-val = 0.484 Test of Moderators (coefficient 2): QM(df = 1) = 19.258, p-val < .001 Model Results: estimate se zval pval ci.lb ci.ub intrcpt 0.407 0.087 4.678 <.001 0.237 0.578 *** weeks.c -0.157 0.036 -4.388 <.001 -0.227 -0.087 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
These results again match the findings from Raudenbush and Bryk (1985). The residual amount of heterogeneity is now $\hat{\tau}^2 \approx 0$ (p. 90) and the test statistic for $\mbox{H}_0{:}\; \tau^2 = 0$ is $Q_E(df=17) = 16.57$ (p. 90). The estimated model is $E(d_i) = .407 - 0.157 x_i$, where $x_i$ is the number of prior contact weeks (p. 90). The standard errors of the model coefficients are $SE[b_0] = .087$ and $SE[b_1] = .036$, so that the test statistics are $z_0 = 4.68$ and $z_1 = -4.39$, respectively (p. 92).
Empirical Bayes Estimates
The empirical Bayes estimates can again be obtained with:
blup(res)
pred se pi.lb pi.ub 1 0.093 0.037 0.020 0.166 2 -0.065 0.046 -0.155 0.026 3 -0.065 0.046 -0.155 0.026 4 0.407 0.087 0.237 0.578 5 0.407 0.087 0.237 0.578 6 -0.065 0.046 -0.155 0.026 7 -0.065 0.046 -0.155 0.026 8 -0.065 0.046 -0.155 0.026 9 0.407 0.087 0.237 0.578 10 0.250 0.057 0.139 0.361 11 0.407 0.087 0.237 0.578 12 0.407 0.087 0.237 0.578 13 0.250 0.057 0.139 0.361 14 0.093 0.037 0.020 0.166 15 -0.065 0.046 -0.155 0.026 16 -0.065 0.046 -0.155 0.026 17 0.250 0.057 0.139 0.361 18 0.093 0.037 0.020 0.166 19 -0.065 0.046 -0.155 0.026
which are actually the same now as the fitted values (since $\hat{\tau}^2 \approx 0$).2)
Scatterplot with Predictions
Finally, we can draw a scatterplot of the observed standardized mean differences as a function of the weeks variable (with the radius of the points drawn proportional to the inverse standard errors and hence the area of the points drawn proportional to the inverse sampling variances) with:
regplot(res, xlab="Weeks of Prior Contact", bty="l", las=1, digits=1, refline=0, xaxt="n") axis(side=1, at=c(0,1,2,3), labels=c("0", "1", "2", ">2"))
The predicted (average) effect as a function of the weeks of prior contact (with 95% CI bounds) is also added to the plot. The resulting plot is shown below.
References
Raudenbush, S. W. (1984). Magnitude of teacher expectancy effects on pupil IQ as a function of the credibility of expectancy induction: A synthesis of findings from 18 experiments. Journal of Educational Psychology, 76(1), 85–97.
Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. Journal of Educational Statistics, 10(2), 75–98.
predict(res)
.